Variability of Profile Shapes for O₃ and NO₂ and Comparison to Simulated Profiles during the DISCOVER-AQ Project

Clare Flynn, Kenneth Pickering, James Crawford, Andrew Weinheimer, Christopher Loughner, Pius Lee, K. Lee Thornhill

August 28, 2015

Investigation Overview

<u>Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality</u>

A NASA Earth Venture campaign intended to improve the interpretation of satellite observations to diagnose near-surface conditions relating to air quality

Obiectives:

- 1. Relate column observations to surface conditions for aerosols and key trace gases O_3 , NO_2 , and CH_2O
- 2. Characterize differences in diurnal variation of surface and column observations for key trace gases and aerosols
- 3. Examine horizontal scales of variability affecting satellites and model calculations

<u>Deployments and key collaborators</u>

Maryland, July 2011 (EPA, MDE, UMd, and Howard U.)

SJV, California, January/February 2013 (EPA and CARB)

Texas, September 2013 (EPA, TCEQ, and U. of Houston)

Colorado, Summer 2014

Deployment Strategy

Systematic and concurrent observation of column-integrated, surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality as they evolve throughout the day.

Three major observational components:

NASA UC-12 (Remote sensing)
Continuous mapping of aerosols
with HSRL and trace gas columns
with ACAM

NASA P-3B (in situ meas.)
In situ profiling of aerosols and trace gases over surface measurement sites

Ground sites

In situ trace gases and aerosols Remote sensing of trace gas and aerosol columns (Pandora) Ozonesondes Aerosol lidar observations

Motivation

- Understanding variability of in situ profile shapes is useful for understanding how column data and surface data are related
 - Profile shape determines which altitude layers contribute most to the column
 - Ultimately, how well do satellite observations represent surface air quality?
- Also useful in the assessment of air quality models and the assumed profile shapes used in satellite retrievals
- Objective of this study is to characterize the variability of the in situ O₃ and NO₂ P-3B profiles
 - Do classes of profile shapes emerge for each campaign?
 - How well do regional and global air quality model simulated profiles compare to the observations?

Hierarchical Cluster Analysis

- Followed the approach of Hains et al. (2008)
 - Agglomerative hierarchical cluster analysis
 - P-3B O₃ or NO₂ profiles only
 - Applied to each of the 4 campaigns
- Cluster analysis seeks to group together similar objects (objects can be individual differences between profile pairs, or even clusters of profile differences)
- Initially treats each object (individual differences) as its own cluster and continues to cluster until all objects (individual differences/clusters of differences) are grouped into one large cluster

Hierarchical Cluster Analysis

- Optimal number of meaningful clusters determined by combination of manual inspection of dendrogram, rules of thumb, and a technique based on total root mean square deviation (TRMSD)
- Median profile cluster significance criterion:
 - 5 consecutive altitude layers in which the error bars did not overlap with those of any other median profile

P-3B O₃ Cluster Median Profiles

- Few clusters obtained for the California and Colorado campaigns
 - Complex terrain may lead to greater horizontal mixing within study region
 - CA campaign occurred during cold season
 - However, all clusters significant within planetary boundary layer
 (PBL)

P-3B O₃ Cluster Median Profiles

- Texas demonstrated the greatest number of significant clusters
 - Greatest range of mixing ratio values also
- Maryland's behavior unlike the other 3 campaigns
 - Appears to produce the most clusters, but only Cluster 4 is distinct within mid-upper PBL

Influence of Vertical Mixing

- Potential temperature (theta) profile indicates stability and degree of vertical mixing within PBL, FT
- Generally, where the theta profile is well mixed within the PBL, the O₃ profile is also relatively well mixed and vice versa

Influence of Vertical Mixing

 However, influence of vertical mixing somewhat weaker for MD, TX campaigns than for CA, CO campaigns

P-3B NO₂ Cluster Median Profiles

- Maryland again produced greatest number of clusters though none are significant
- Clusters 1 and 2 (with 1 profile apiece) only are significant for the Texas campaign
- NO₂ profiles thus displayed relatively uniform behavior

P-3B NO₂ Cluster Median Profiles

- All 3 clusters are significant for these campaigns, but.....
- Only California hints at some NO₂ profile variability
- NO₂ again fairly uniform behavior
- Larger mixing ratios encountered during CA, CO than for MD, TX

Influences on NO₂

- No clear meteorological influences emerged at the spiral sampling times (potential temperature, lapse rate, winds, etc.)
- Mixing ratio ranges, number of significant clusters suggest O₃ production plays a role in regulating the variability of the NO₂ profile behavior
 - More profile shape variability under conditions of inhibited O₃ formation and vice versa

Model Simulations

- Different model simulations available for different campaigns
- Community Multiscale Air Quality (CMAQ) model:
 - Simulations available for the Maryland and Texas campaigns courtesy of Chris Loughner (NASA GSFC)
 - NOAA ARL CMAQ forecasts available for the California, Colorado campaigns

Loughner et al. CMAQ Simulations

Maryland		Texas
Time Period	May 25 through July 31, 2011	Aug. 18 through Sept. 31, 2013
Chemical mechanism	CB05	CB05
Aerosols	AE5	AE5
Domain	12 km horizontal resolution over eastern U. S.	4 km horizontal resolution over eastern TX
Inputs	WRF meteorology; MOZART CTM	WRF meteorology; MOZART CTM
Vertical Diffusion	ACM2	ACM2
Land Surface Model	Pleim-Xiu	Pleim-Xiu
LNOx	Yes	Yes

NOAA CMAQ Forecasts

California		Colorado
Time Period	January-February 2013	July-August 2014
Chemical mechanism	CB05	CB05
Aerosols	aero4	Aero4
Domain	12 km horizontal resolution over continental U. S.	4 km horizontal resolution over Colorado
Inputs	WRF meteorology	WRF meteorology
Vertical Diffusion	MYJ	MYJ
Land Surface Model	NOAH LSM	NOAH LSM

O₃ and NO₂ Shape Factors

- Median shape factor for O₃ and NO₂ also computed for each cluster
- Shape factor defined as ratio of partial column within a model vertical layer to the tropospheric column
 - $S(z) = \Omega_z / \Omega_{trop}$
- Computed for P-3B profiles
 - Partial column computed for CMAQ layer
 - Ratio to P-3B partial tropospheric column then computed
- Also computed for CMAQ profiles
 - Also used partial column over P-3B spiral depths for comparison!!

P3B/CMAQ O₃ Shape Factors

P3B/CMAQ O₃ Shape Factors

P3B/CMAQ NO₂ Shape Factors

California

P3B/CMAQ NO₂ Shape Factors

Texas

Conclusions

- P3B O₃ clusters:
 - Few terrain influences, and generally westerly flow at several layers leads to little variability of profile shapes --Maryland
 - Cold season and/or terrain influences dampen variability, though not as much as for Maryland
 - Atmospheric stability influences median cluster profile shape
- P3B NO₂ clusters:
 - NO₂ displayed relatively uniform behavior for the MD, TX campaigns (due to O₃ production?) and CO campaign
 - California displayed the greatest amount of variability

Conclusions

- P-3B O₃ cluster shape factors:
 - CMAQ shape factors generally capture the shape and magnitude of the P-3B shape factors
- P-3B NO₂ cluster shape factors:
 - CMAQ captures some of the structure of the P-3B shape factors, though generally too smooth relative to P-3B within PBL
 - CMAQ shape factors thus too large or too small relative to observations, depending on altitude and cluster
- These shape factor profiles indicate that CMAQ remains too well mixed in the vertical
 - Shape factor error more critical in FT than PBL, where OMI-like instruments are more sensitive to composition
 - Indicates greater error for less well mixed gases such as NO₂